ESTATÍSTICA Parte II

PARA OS CURSOS TÉCNICOS

Material Didático Elaborado por:

Alessandro da Silva Saadi MESTRE EM MATEMÁTICA

Capítulo 1

Medidas de Posição

As medidas de posição mais importantes são as **medidas de tendência central**, que recebem esse nome pelo fato de os dados observados tenderem, em geral, a se agrupar em torno dos valores centrais. As medidas que vamos estudar são:

- 1) a média: é utilizada quando:
 - a) desejamos obter a medida de posição que possui a maior estabilidade;
 - b) houver necessidade de um tratamento algébrico posterior.
- 2) a mediana: é utilizada quando:
 - a) desejamos obter o ponto que divide a distribuição em partes iguais;
 - b) há valores extremos que afetam de uma maneira acentuda a média;
 - c) a variável em estudo é salário.
- 3) a moda: é utilizada quando:
 - a) desejamos obter uma medida rápida e aproximada de posição;
 - b) a medida de posição deve ser o valor mais típico da distribuição.

Medidas de Posição para Dados Não- Agrupados

Média \bar{X}

É o quociente da divisão da soma dos valores da variável pelos número deles. Para conhecermos a média dos dados não- agrupados, determinamos a média aritmética simples.

$$\bar{x} = \frac{\sum x_i}{n}$$

Exemplo 1.1) Seja a produção leiteira diária da vaca A, durante uma semana: 10, 14, 13, 15, 16, 18 e 12 litros. Calcule a produção média da semana.

Mediana (Me)

É o valor que divide um conjunto **ordenado** de **n elementos** em duas partes iguais.

1) Quando n é ímpar: a mediana será o termo de ordem $\left(\frac{n+1}{2}\right)$

Exemplo 1.2) Os dados a seguir se referem ao tempo de espera de quinze paciente a serem atendidos em um consultório médico, em minutos: 15,12, 22, 20, 14, 30, 21,12, 10, 18, 13, 23, 18, 12, 25. Encontre o tempo mediano de espera.

2) Quando n é par: a mediana será a média aritmética dos termos de ordem $\left(\frac{n}{2}\right)$ e $\left(\frac{n}{2}+1\right)$

Exemplo 1.3) Os dados a seguir se referem ao tempo de espera de oito pessoas em uma fila do Supermercado Alfa, em minutos: 2, 21, 18, 13, 6, 7, 10, 12. Encontre o tempo mediano de espera.

Moda (Mo)

É o valor que aparece com maior frequência em um conjunto de dados.

Exemplo 1.4) Sejam os seguintes conjuntos de dados, referentes à quantidade de presentes comprados na época de Natal, encontre a **moda**:

a) 7 8 9 10 10 10 10 11 12 13 15

Mo =

Quando temos um único valor como moda o conjunto é chamado de

b) 3 5 8 10 12 13

Mo =

Quando um conjunto não apresenta moda é chamado de

c) 2 3 4 4 4 5 6 7 7 7 8 9

Mo =

Quando um conjunto apresenta duas modas é chamado de

Medidas de Posição para Dados Agrupados

1º) SEM Intervalo de Classes

Vamos estudar em um exemplo a **média**, a **mediana** e a **moda** quando temos dados agrupados.

Exemplo 1.5) Considere a distribuição relativa ao número de filhos de 34 famílias que consultam em um posto de saúde do interior do município:

Número de filhos	Freq. (F)	
0	2	
1	6	
2	10	
3	12	
4	4	
Total	34	

Encontre a média, a mediana e a moda.

a) A média é dada pela fórmula $\bar{x} = \frac{\sum x_i . F}{\sum F}$ e x_i é a variável, logo, a média é:

b) Para encontrar a mediana, basta identificar a frequência acumulada imediatamente superior à metade da soma das frequências. A **mediana** será aquele valor da variável que corresponde a tal frequência acumulada. Assim, completando a tabela acima com a frequência acumulada, temos que:

$$\frac{\sum F}{2}$$
 = Logo, a mediana é Me =

c) Uma vez agrupados os dados, é possível determinar imediatamente a **moda**: basta fixar o valor da variável de maior frequência. Logo Mo=......

2º) COM Intervalo de Classes

Vamos estudar em um exemplo a média, a mediana e a moda quando temos dados agrupados.

Exemplo 1.6) Considere a tabela das estaturas de 40 pessoas.

Estaturas	F	$x_i = Pm$	x _i .F	Fa
150 154	4			
154 158	9			
158 162	11			
162 166	8			
166 170	5			
170 174	3			
Total	40			

Encontre a média, a mediana e a moda.

a) A média é dada pela fórmula: $\frac{\sum x_i.F}{\sum F}$ e x_i é o ponto médio, logo, a média é:

b) No caso da **mediana,** vamos encontrar a classe mediana, e a seguir, calcular a mediana através da fórmula:

$$\underbrace{ \begin{bmatrix} \sum_{i} F \\ 2 \end{bmatrix} - Fa(ant)_{Me}}_{F_{Me}} \times h \quad \text{onde:} \quad \begin{cases} \text{Li \'e o limite inferior da classe mediana} \\ \text{Fa(ant)}_{Me} \ \'e \ a \ frequência \ acumulada \ anterior \ \grave{a} \ da \ classe \ mediana} \\ \text{F}_{Me} \ \'e \ frequência \ da \ classe \ mediana} \\ \text{F}_{Me} \ \'e \ frequência \ da \ classe \ mediana} \\ \text{h \'e a \ amplitude \ do \ intervalo}$$

Logo a mediana é:

c) E por último, temos a **moda** que é encontrada através da fórmula $Mo = \frac{Li + Ls}{2}$ onde Li e Ls são os limites inferior e superior da classe modal. Logo a moda é:

Exercícios

1) Considerando os seguintes conjuntos de dados referentes a números de pacientes atendidos em consultórios médicos por dia, encontre a média, a mediana e a moda:

a) Consultório A

3 5 2 6 5 9 5 2 8 6

b) Consultório B

20 9 7 2 12 7 20 15 7

c) Consultório C

15 18 20 13 10 16 14

2) Sejam as massas de 7 crianças medidas em kg, encontre a média, a mediana e a moda (se tiver): 51,6 48,7 50,3 49,5 48,9 35,5 41,0

- 3) Os salários-hora de cinco funcionários de uma companhia são: R\$75 R\$90 R\$83 R\$142 R\$88, determine:
- a) a média dos salários-hora
- b) o salário-hora mediano
- 4) As notas de um candidato, em seis provas de um concurso, foram: 8,4 9,1 7,2 6,8 8,7 7,2. Determine:
- a) a nota média
- b) a nota mediana
- c) a nota modal.
- 5) A seguir, estão os valores mensais referentes ao consumo de energia elétrica (em kwh) medidos em uma residência durante 12 meses.

50	267	279	262	226	298
294	272	297	257	244	50

- a) Qual foi o consumo médio do período?
- b) Qual foi o consumo mediano?
- c) Qual dessas duas medidas você acha que representa melhor o consumo de energia nessa casa?
- 6) Em uma classe de 50 alunos, as notas obtidas formaram a seguinte distribuição:

NOTAS	Nº DE ALUNOS
2	1
3	3
4	6
5	10
6	13
7	8
8	5
9	3
10	1
Total	50

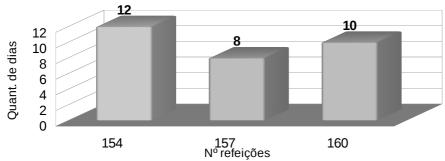
Calcule:

- a) a nota média.
- b) a nota mediana.
- c) a nota modal.

7) O gráfico a seguir mostra o quadro de funcionários da Loja BETA com os seus respectivos salários (em salários mínimos).

- a) Monte uma tabela referente a esse gráfico.
- b) Quantas pessoas trabalham na Loja BETA?
- c) Encontre o salário médio (Em salário mínimo).
- d) Encontre o salário mediano (Em salário mínimo).
- e) Encontre o salário modal.
- 8) Dado o seguinte gráfico das refeições servidas em um mês no Restaurante Caseiro, encontre a quantidade média, mediana e quantidade modal de refeições diárias servidas.

Refeições servidas durante um mês - Restaurante Caseiro



Sugestão: Monte a tabela referente a esse gráfico.

9) Dadas as distribuições de frequência seguintes, encontre a média, a mediana e a moda:

a)		b)		c)	
Massas Kg	Frequência	Estaturas (cm)	Frequência	Salário R\$	Frequência
40 44	2	150 156	1	500 700	8
44 48	5	156 162	5	700 900	20
48 52	9	162 168	8	900 1100	7
52 56	6	168 174	13	1100 1300	5
56 60	4	174 180	3	1300 1500	2
Total	26	Total	30	1500 1700	2
				Total	44

Capítulo 2

Medidas de Dispersão ou Variabilidade

Introdução

Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não são suficientes para caracterizar totalmente uma sequência de dados.

Veja os seguintes dados:

- A) 10, 1, 18, 20, 35, 3, 7, 15, 11, 10
- B) 12, 13, 13, 14, 12, 14, 12, 14, 13, 13
- C) 13, 13, 13, 13, 13, 13, 13, 13, 13

Qual é a média desses dados?

Concluímos que a média das sequências é

Podemos notar que as sequências são completamente distintas do ponto de vista da variabilidade dos dados.

O que podemos constatar sobre a dispersão dos dados em relação à média?

Medidas de Dispersão Absoluta

As principais medidas de dispersão absolutas são: **amplitude total, desvio médio, variância** e **desvio padrão.**

Amplitude Total

Para uma rápida medida de variabilidade, podemos calcular a amplitude total que é a diferença entre o maior e o menor valor de uma distribuição.

$$AT = V_{max} - V_{min}$$

A amplitude total considera apenas os valores extremos de um conjunto de dados. Tais valores podem ser ser atípicos.

Exemplo 2.1)

a) Calcule a amplitude total das notas dos alunos da turma B da Escola Beta:

•							
4	45	5	5	5	5	55	6
-	7,5	9	5	5	5	5,5	U

b) Em um orfanato tem crianças de várias idade conforme tabela de distribuição de frequência. Determine a amplitude total da série.

Idade	Nº de crianças
2	1
3	6
5	10
7	3
Total	20

c) A seguinte distribuição mostra as notas de 44 alunos da Escola Alfa. Determine a amplitude total da série.

Notas	Frequência
0 2	5
2 4	10
4 6	20
6 8	7
8 10	2
Total	44

Observação: A amplitude total é muito fácil de se obter, mas esse tipo de medida tem um inconveniente pois depende apenas de dois valores da série estatística. Muitas vezes é possível modificar completamente a dispersão ou a concentração dos elementos em torno da média, sem alterar a amplitude total.

Desvio Médio

A dispersão dos dados em relação à média de uma série estatística pode ser avaliada através dos desvios de cada elemento da série em relação a média.

Para levar em conta todos os valores da distribuição, além dos extremos, subtrai-se a média aritmética de cada elemento do conjunto de dados e somam-se as diferenças, calculando, dessa forma, o desvio de cada elemento em relação à média.

Como essa soma é sempre igual a zero, pois alguns valores são negativos e outros positivos, considera-se apenas o módulo das diferenças. Portanto, o desvio médio é definido como a média aritmética dos desvios em módulo.

Desvio Médio para dados brutos ou rol

$$DM = \frac{\sum_{i=1}^{N} |x_i - \bar{x}|}{N}$$

Exemplo 2.2) Determine o desvio médio para as notas dos 8 alunos da turma A da Escola Gama:

|--|

Interpretação:	
	_

Desvio Médio para dados agrupados:

SEM intervalo de classes:

Quando temos dados agrupados, a frequência simples representa o número de vezes que esse valor figura na série. Logo, haverá repetições de desvios iguais de cada elemento distinto da série para a média da série.

A fórmula para o cálculo do desvio médio é: $DM = \frac{\sum |x_i - \bar{x}| f_i}{\sum f_i}$

Exemplo 2.3) Veja a tabela do número de filhos de 10 casais pesquisados em um posto de saúde e determine o desvio médio para a distribuição:

Nº de filhos	f _i	
1	2	
3	5	
4	2	
5	1	
Total	10	

Interpretação:_	 	

Desvio Médio para dados agrupados:

COM intervalo de classe:

Nessa situação, por desconhecermos os valores individuais dos elementos componentes da distribuição, substituiremos os valores \mathbf{x}_i pelos *pontos médios* de classe.

A fórmula para o cálculo é: $DM = \frac{\sum |x_i - \bar{x}| f_i}{\sum f_i}$ onde x_i é o ponto médio da classe.

Exemplo 2.4) A seguinte tabela é referente às notas de 20 alunos da disciplina de Estatística da ETEGV. Encontre o desvio médio dessa distribuição:

Notas	fi	Xi	
2 4	5		
4 6	10		
6 8	4		
8 10	1		
Total	20		

Interpretação:_			

O desvio médio já não é tão usado, pois ele utiliza a função módulo que nem sempre é viável em algumas análises estatísticas. Essa medida auxilia na compreensão de outras medidas de dispersão como a **variância** e o **desvio padrão**.

Variância e Desvio Padrão

A **variância** e o **desvio padrão** são medidas que levam em consideração a totalidade dos valores da variável em estudo, o que faz delas, índices de variabilidade bastante estáveis e por isso, os mais empregados.

Para o cálculo da **variância**, em vez de considerar o módulo da diferença, eleva-se essa diferença ao quadrado, eliminando, assim, o problema do sinal negativo. Se substituirmos a expressão $|X_i - \overline{X}|$

por $(x_i - \bar{x})^2$ obtemos essa nova medida de dispersão ou variabilidade chamada de variância, que é definida como a média aritmética dos quadrados dos desvios.

O **desvio padrão** é a raiz quadrada positiva da variância e significa, em média, quanto cada elemento de uma série está afastado da média da série.

A variância é representada pela letra grega σ^2 (sigma) ao quadrado e o desvio padrão por σ .

Cálculo da Variância e Desvio Padrão para dados brutos ou rol

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$
 e $\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$

Exemplo 2.5) Calcule a variância e o desvio padrão das seguintes notas de 8 alunos que terminaram a disciplina de Estatística e interprete o resultado:

5	8	5,5	7	7,5	6,5	9,5	10	

Cálculo da Variância e Desvio Padrão para dados agrupados

$$\sigma^{2} = \frac{\sum (x_{i} - \bar{x})^{2} \cdot f_{i}}{\sum f_{i}} \qquad e \qquad \sigma = \sqrt{\frac{\sum (x_{i} - \bar{x})^{2} \cdot f_{i}}{\sum f_{i}}}$$

Exemplo 2.6) (SEM intervalo de classe)

Calcule a variância e o desvio padrão da seguinte distribuição relativa ao tempo de espera na fila de um banco e interprete o resultado:

Tempo de espera	Frequência f _i		
2	3		
3	5		
4	8		
5	4		
Total	20		

Exemplo 2.7) (COM intervalo de classe)

A seguinte distribuição é uma tabela de salários recebidos em uma empresa de informática com sua devidas faixas salariais. Calcule a variância e o desvio padrão interpretando o resultado.

Faixa Salarial	Frequência f _i		
0 4	1		
4 8	3		
8 12	5		
12 16	1		
Total	10		

Coeficiente de Variação

O **coeficiente de variação** (CV) é uma medida de dispersão relativa que mede a dispersão dos dados em relação à média. É calculado dividindo-se o desvio padrão pela média e multiplicando por 100, para expressar o resultado em porcentagem, em vez de se utilizar a unidade de medida da variável em análise. Assim:

$$CV = \frac{\sigma}{\bar{X}} \cdot 100$$

Para facilitar a interpretação do coeficiente de variação, usaremos os seguintes intervalos:

 $CV \ge 30 \%$ Alta dispersão 15 % < CV < 30 % Média dispersão $CV \le 15 \%$ Baixa dispersão

Exemplo 2.8) Na tabela abaixo são apresentados os valores do desvio-padrão e da média da altura e peso de um grupo de pessoas. Através do coeficiente de variação encontre a variável que tem a maior dispersão relativa.

	Média	Desvio-padrão
Altura	174 cm	7 cm
Peso	78 kg	12 kg

Exercícios

- 1) Calcule a amplitude total (AT) das seguintes séries:
- a) X: 2, 8, 10, 15, 20, 22, 30
- b) Y: 12, 9, 15, 40, 22, 34, 8

c)

Xi	f _i
3	4
8	7
12	9
15	10
20	3

- 2) Considerando as séries X e Y das letras a e b, qual delas apresenta maior dispersão absoluta?
- 3) Nas seguintes séries, calcule o desvio médio (DM) e interprete o resultado:
- a) 3, 8, 12, 3, 9, 7

b) 2; 2,5; 3,5; 7; 10; 14,5; 20

<u>c)</u>	
X_i	f _i
2	3
4	8
5	10
6	6
8	2
10	1

4) Na seguinte distribuição, calcule a AT e o DM interpretando o resultado:

Salários em R\$	N° de vendedores
700 1200	8
1200 1700	28
1700 2200	54
2200 2700	32
2700 3200	12
3200 3700	6
Total	140

5) Calcule a variância, o desvio-padrão e o coeficiente de variação dos seguintes dados:

a) A: 2, 3, 7, 9, 11, 13

b) B: 5, 12, 4, 20, 13, 17

c)

9)	
Idade (anos)	Nº de alunos
17	3
18	18
19	17
20	8
21	4

6) Calcule a variância, o desvio-padrão e o coeficiente de variação para o número de acidentes diários, observados em um cruzamento, durante 40 dias:

Nª de acidentes por dia	Nº de dias
0	30
1	5
2	3
3	1
4	1

7) Calcule a variância, o desvio-padrão e o coeficiente de variação para a distribuição de valores de 54 notas fiscais emitidas na mesma data, selecionadas em uma loja de departamentos e interprete os resultados.

Consumo por nota R\$	Nº de notas
0 50	10
50 100	28
100 150	12
150 200	2
200 250	1
250 300	1

8) Calcule a variância e o desvio-padrão para as alturas de 70 alunos de uma classe:

Alturas(cm)	Nº de alunos
150 160	2
160 170	15
170 180	18
180 190	18
190 200	16
200 210	1

Capítulo 3

Introdução à Probabilidade

Introdução

Há certos fenômenos (ou experimentos) que, embora sejam repetidos várias vezes e sob mesmas condições, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma moeda perfeita, o resultado é imprevisível; não se pode determiná-lo antes de ser realizado. Esses fenômenos ou experimentos são chamados de **aleatórios.**

Experimento Aleatório

É todo experimento (ou fenômeno) que, repetido várias vezes sob condições idênticas, apresentar resultados imprevisíveis, isto é, depender exclusivamente do acaso.

Exemplo 3.1)

- a) lançamento de um dado ou de uma moeda;
- b) o sorteio de uma loteria de números;
- c) selecionar uma amostra da produção de um certo artigo para o controle de sua qualidade;
- d) escolher uma ou mais pessoas para uma pesquisa de mercado.
- O cálculo das **probabilidades** nos permite encontrar um número que mostra a *chance* de ocorrência do resultado desejado num experimento aleatório.

Espaço Amostral (S)

Escola Técnica Estadual Getúlio Vargas – ESTATÍSTICA II – Prof. Me. Alessandro da Silva Saadi

É o conjunto de todos os resultados possíveis de um experimento. O número de elementos desse conjunto é indicado por n(S).

Exemplos 3.2) Encontre o espaço amostral e o número de elementos em cada caso:

- a) ao lançarmos um dado, os resultados possíveis, ou seja, o espaço amostral é o conjunto:
- b) ao lançarmos uma moeda, o espaço amostral é o conjunto:
- c) no sorteio de uma dezena da Megasena, o espaço amostral é o conjunto:
- d) ao sortearmos um estado da região Sul do Brasil, o espaço amostral é:

Evento

É o conjunto dos resultados desejados num experimento. Em geral, indicamos um evento por uma letra maiúscula.

Exemplo 3.3)

- a) ocorrência de números menores do que 4: A = {
- b) ocorrência de números ímpares: **B = {**
- c) ocorrência de números maiores do que 1: **C = {** } (Note que a ocorrência desse evento é muito provável, mas não garante que ele irá acontecer sempre)
- d) ocorrência de números maior do que 5: **D** = {
- (É pouco provável a ocorrência desse evento. Quando o evento é um conjunto unitário, dizemos que é simples ou elementar)
- e) ocorrência de números menores do que 7: E = S = {

(A ocorrência desse evento é certa, pois qualquer número do espaço amostral é menor do que 7. Dizemos que um evento é **certo** quando o espaço amostral é igual a ele).

f) ocorrência de um número maior do que 6: F =

(A ocorrência desse evento é impossível, pois qualquer número do espaço amostral é menor do que ou igual a 6. Nesse caso o evento é **impossível**).

Exemplo 3.4)

Ao lançarmos um dado, o espaço amostral é $S = \{1,2,3,4,5,6\}$. Alguns eventos que podemos citar em relação a esse espaço amostral são:

Escola Técnica Estadual Getúlio Var	gas – ESTATÍSTICA II – Prof. Me. Alessandro da Silva Saadi

Exemplo 3.5) Determine o espaço amostral do experimento aleatório *lançamento simultâneo de duas moedas* e a seguir diga o número de elementos de S.

Exemplo 3.6) Um casal pretende ter três filhos. Determine:

- a) o espaço amostral que representa as possibilidades de filhos em relação ao sexo masculino (M) ou feminino (F).
- b) o evento A, da ocorrência de três filhos do sexo masculino.
- c) o evento B, da ocorrência de dois filhos do sexo feminino e um do masculino.

Exemplo 3.7) Dois dados foram lançados simultaneamente. Determine:

- a) o espaço amostral S.
- b) o evento A, da ocorrência de um mesmo número em ambos.
- c) o evento B, de a soma dos números ser 6.
- d) o evento C, da soma ser maior do que 12.

Exercícios

- 1) No lançamento de um dado, determine o evento para obter:
- a) um número maior do que 4.
- b) um número primo.
- 2) Considerando o experimento SORTEIO DE UM NÚMERO DE 1 A 20, determine o evento para obter um número:
- a) múltiplo de 3.
- b) múltiplo de 5
- 3) Considere o experimento aleatório NASCIMENTO DE TRÊS FILHOS DE UM CASAL, determine o evento de obter o nascimento:
- a) de exatamente uma menina.
- b) de no máximo uma menina.
- c) de no mínimo duas meninas.
- 4) Um dado e uma moeda são lançados, e os resultados obtidos são registrados. Determine o conjunto do espaço amostral do experimento.
- 5) Um time de futsal irá disputar um campeonato regional. Para isso, foram chamados 5 jogadores que jogam na defesa. Nomeando esses jogadores de A, B, C, D e E, determine o espaço amostral das **duplas** de defesa que podem ser formadas com esses jogadores.
- 6) Uma caixa contém 10 bolas idênticas numeradas de 1 a 10. São retiradas dessa caixa, sucessivamente, 2 bolas sem reposição. Sendo A o evento em que a soma dos números sorteados é par e B o evento em que o produto dos números sorteados é menor do que 20, determine A∩B.

Capítulo 4

Probabilidade de um Evento

Seja um evento A de um espaço amostral S. A probabilidade P(A) de o evento A ocorrer é a razão entre o número de elementos de A pelo número de elementos de S, isto é :

$$P(A) = \frac{n(A)}{n(S)} = \frac{n \text{ úmero de casos favoráveis}}{n \text{ úmero de casos possíveis}}$$

Exemplo 4.1) Lançado um dado honesto qual a probabilidade de:

- a) se obter um número ímpar na face voltada para cima?
- b) se obter um número menor do que 3 na face voltada para cima?
- c) se obter um número maior do que 6 na face voltada para cima?

teoria de conjuntos que:

$$\mathsf{n}(\mathsf{A} \!\cup\! \mathsf{B}) \!\!=\! \mathsf{n}(\mathsf{A}) \!\!+\! \mathsf{n}(\mathsf{B}) \!\!-\! \mathsf{n}(\mathsf{A} \!\cap\! \mathsf{B})$$

Para a probabilidade de ocorrência do evento união de A e B, temos:

$${\mathsf P}({\mathsf A}{\cup}{\mathsf B}){=}{\mathsf P}({\mathsf A}){+}{\mathsf P}({\mathsf B}){-}{\mathsf P}({\mathsf A}{\cap}{\mathsf B})$$

<u>Escola Técnica Estadual Getúlio Vargas – ESTATÍSTICA II – Prof. Me. Alessandro da Silva Saadi</u>
Exemplo 4.4) Em um armário tem 40 caixas numeradas de 1 a 40. Qual a probabilidade de se retirar acaso uma dessas caixas e o seu número ser um múltiplo de 4 ou 7?
Podemos ter a situação em que $A \cap B = \emptyset$. Os eventos A e B, nessas condições, são chamados mutuamente exclusivos , isto é, ocorrendo A, certamente não ocorrerá B.
Assim, a probabilidade da união de dois eventos é:
$P(A \cup B) = P(A) + P(B)$
Exemplo 4.5) Vamos calcular a probabilidade de sortear um número par ou múltiplo de 3 dentre os inteiros de 1 a 30.
Exemplo 4.6) Lançando-se simultaneamente dois dados não viciados, qual a probabilidade de suas faces superiores exibirem soma igual a 7 ou 9?

Eventos Complementares

Sabemos que um evento pode ocorrer ou não. Sendo ${\bf p}$ a probabilidade de que ele ocorra (sucesso) e ${\bf q}$ a probabilidade de que ele não ocorra (insucesso), para um mesmo evento existe sempre a relação:

$$p + q = 1 \Rightarrow q = 1 - p$$

Exemplo 4.7) Se a probabilidade de se realizar um evento é $p=\frac{1}{5}$ qual a probabilidade de que ele não ocorra?

Exemplo 4.8) Sabemos que a probabilidade de tirar o 4 no lançamento de um dado é $p=\frac{1}{6}$. Qual a probabilidade de não tirar o 4 no lançamento de um dado?

Eventos Independentes

Dizemos que **dois eventos** são **independentes** quando a realização ou a não-realização de um dos eventos não afeta a probabilidade da realização do outro e vice-versa.

Exemplo 4.9) Quando lançamos dois dados, o resultado obtido em um deles _______(depende/ independe) do resultado obtido no outro.

Se dois eventos são independentes, a probabilidade de que eles se realizem **simultaneamente** é igual ao produto das probabilidades de realização dos dois eventos.

Assim, sendo $\mathbf{p_1}$ a probabilidade de realização do primeiro evento e $\mathbf{p_2}$ a probabilidade de realização do segundo evento, a probabilidade de que tais eventos se realizem simultaneamente é dada por:

$$p = p_1 \times p_2$$

Exemplo 4.10) Lançado dois dados simultaneamente, qual a probabilidade de se obter 1 no primeiro dado e 5 no segundo dado?

Eventos Mutuamente Exclusivos

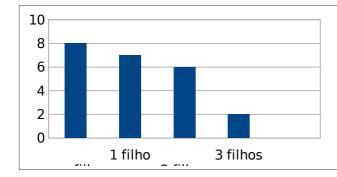
Dizemos que **dois ou mais eventos** são **mutuamente exclusivos** quando a realização de um exclui a realização do(s) outro(s).

Exemplo 4.11) No lançamento de uma moeda, o evento "*tirar cara*" e o evento "*tirar coroa*" ______ (são/ não são) mutuamente exclusivos, já que, ao se realizar um deles, o outro ______ (se realiza/ não se realiza).

Se dois eventos são mutuamente exclusivos, a probabilidade de que um ou outro se realize igual à soma das probabilidades de que cada um deles se realize:
$p = p_1 + p_2$
Exemplo 4.12) Lançado um dado, qual a probabilidade de se tirar o 3 ou o 5?
Mais Exemplos
Para resolver os problemas envolvendo baralhos, saiba que:
 um baralho tem 52 cartas no total. um baralho tem quatro naipes: ouro; copa; pau; espada. cada naipe tem 13 cartas.
Exemplo 4.13) Qual a probabilidade de sair o ás de ouros quando retiramos uma carta de um baralho de 52 cartas?
Exemplo 4.14) Qual a probabilidade de sair um rei quando retiramos uma carta de um baralho de 5 cartas?
Exemplo 4.15) Em um lote de 12 peças, 4 são defeituosas. Sendo retirada uma peça, calcule: a) a probabilidade de essa peça ser defeituosa.
b) a probabilidade de essa peça não ser defeituosa.

Exercícios

- 1) Considere o lançamento de um dado perfeito. Determine a probabilidade da ocorrência de uma face com número par:
- 2) Uma família é composta por sete pessoas: a mãe, o pai, três filhos homens e duas filhas moças. Determine a probabilidade de ao escolhermos:
- a) um membro desta família, este ser do sexo masculino.
- b) um membro desta família, este ser do sexo feminino.
- c) um filho desta família, este ser do sexo masculino.
- 3) Em uma urna há 165 bolas coloridas de mesmo tamanho, sendo 22 vermelhas, 43 azuis, 37 brancas e as restantes pretas. Se retirarmos uma bola da urna ao acaso qual a probabilidade que ela seja:
- a) preta
- b) vermelha
- c) branca
- d) azul
- 4) Qual a probabilidade de sair o AS de ouros, quando retiramos uma carta de um baralho de 52 cartas?
- 5) Qual a probabilidade de sair um rei, quando retiramos uma carta de um baralho de 52 cartas?
- 6) Qual a probabilidade de sair uma carta de espadas, quando retiramos uma carta de um baralho de 52 cartas?
- 7) Em um lote de 12 peças, 4 são defeituosas. Sendo retirada uma peça, calcular:
- a) a probabilidade dessa peça ser defeituosa.
- b) a probabilidade dessa peça não ser defeituosa.
- 8) São lançadas duas moedas simultaneamente.
- a) qual a chance de ocorrer exatamente uma cara
- b) qual a probabilidade de ocorrer no mínimo uma cara?
- 9) Faça o exercício anterior com o lançamento de três moedas:
- 10) Dois dados são lançados simultaneamente, qual a probabilidade de:
- a) a soma ser 5.
- b) a soma ser menor do que 4.
- c) a soma ser 9.
- d) o 1° resultado ser maior do que o 2°.
- e) a soma ser igual ou menor do que 5.
- 11) (ENEM) As 23 ex-alunas de uma turma que completou o Ensino Médio há 10 anos se encontraram em uma reunião comemorativa. Várias delas haviam se casado e tido filhos. A distribuição das mulheres, de acordo com a quantidade de filhos, é mostrada no gráfico abaixo.



Um prêmio foi sorteado entre todos os filhos dessas ex-alunas. A probabilidade de que a criança premiada tenha sido um(a) filho(a) único(a) é:

a) 1/3 b) 1/4 c) 7/15 d) 7/23 e) 7/25

- 12) No lançamento de um dado, qual é a probabilidade de sair o número 6 ou um número ímpar?
- 13) Duas cartas são retiradas de um baralho de 52 cartas. Calcule a probabilidade de se obterem:
- a) dois valetes.
- b) um valete e uma dama.
- 14) Um casal planeja ter três filhos. Determine a probabilidade de nascerem:
- a) três homens.
- b) dois homens e uma mulher.
- 15) Uma moeda é lancada três vezes. Calcule a probabilidade de obtermos:
- a) três caras.
- b) duas caras e uma coroa.
- c) uma cara somente.
- d) nenhuma cara.
- e) pelo menos uma cara.
- f) no máximo uma cara.
- 16) Uma urna contém 50 bolas idênticas. Sendo as bolas numeradas de 1 a 50, determine a probabilidade de, em uma extração ao acaso:
- a) obtermos a bola de número 27.
- b) obtermos uma bola de número par.
- c) obtermos uma bola de número maior do que 20.
- d) obtermos uma bola de número igual ou menor do que 20.
- 17) Uma loja dispõe de 12 geladeiras do mesmo tipo, das quais 4 apresentam defeitos.
- a) Se um frequês vai comprar uma geladeira, qual a probabilidade de levar uma defeituosa?
- b) Se um freguês vai comprar duas geladeiras, qual a probabilidade de levar duas defeituosas?
- c) Se um freguês vai comprar duas geladeiras, qual a probabilidade de levar pelo menos uma defeituosa?
- 18) Um lote é formado por 10 peças boas, 4 com defeitos e 2 com defeitos graves. Uma peça é escolhida ao acaso. Calcule a probabilidade de que:
- a) ela não tenha defeitos graves.
- b) ela não tenha defeitos.
- c) ela seja boa ou tenha defeitos graves.

Alessandro da Silva Saadi

Graduado, especialista e mestre em Matemática pela Universidade Federal do Rio Grande – FURG. Foi professor das disciplinas Matemática Financeira e Matemática Aplicada nos cursos de Administração de Empresas, Ciências Contábeis, Ciências Econômicas e Matemática na FURG e atualmente é técnico matemático na FURG e professor da Escola Técnica Estadual Getúlio Vargas – ETEGV em Rio Grande.

Referências Bibliográficas

SILVA, E.M.; et al. **Estatística.** São Paulo: Editora Atlas, 1999.

PINTO, S.S.; SILVA, C.S. Estatística Volume 1. Rio Grande: Editora da FURG, 2010.

CRESPO, A.A. Estatística Fácil. São Paulo: Editora Saraiva, 2002.