OBMEP 2024 – Nível 3 – Máximo de Alunos Sem Notas Iguais

OBMEP 2024 Nível 3 – Máximo de Alunos Sem Notas Iguais

OBMEP 2024 – Nível 3 – Questão 20

Enunciado:

Uma competição de matemática consiste de uma prova com três problemas. Cada aluno pode obter nota 0, 1 ou 2 em cada problema. Após a correção das provas, constatou-se que não existiam dois alunos com notas iguais nos mesmos dois problemas. Qual é o número máximo de alunos que podem ter participado da competição?

(A) 8
(B) 12
(C) 6
(D) 16
(E) 9

Ver Solução

Entendendo o enunciado: Queremos o número máximo de alunos tal que nenhum par de alunos tenha as mesmas notas nos mesmos dois problemas.

Raciocínio:

Cada problema admite três notas: 0, 1 ou 2. Analisando os dois primeiros problemas, existem:
\( 3 \times 3 = 9 \) combinações possíveis de notas nesses dois problemas.

Se mais de 9 alunos participarem, então, pelo Princípio da Casa dos Pombos, pelo menos dois deles terão o mesmo par de notas nos dois primeiros problemas — o que contradiz a condição dada.

Logo, o máximo de alunos possíveis é 9.

Segue uma tabela que mostra uma possível configuração para os 9 alunos, sem repetição de pares:

AlunoNota P1Nota P2Nota P3
Aluno 1000
Aluno 2011
Aluno 3022
Aluno 4100
Aluno 5112
Aluno 6121
Aluno 7201
Aluno 8210
Aluno 9221

Resposta correta: (E) 9

🧠 Mapas Mentais de Matemática

"Artigo escrito por"

Nos ajude compartilhando esse post 😉

Facebook
WhatsApp
Twitter
Pinterest

Veja também...

Rolar para cima