Questão 10 – Expressão com potências de mesma base

Questão 10 – Expressão com potências de mesma base
Questão 10: Cálculo com potências – fatoração

Enunciado: Determine o valor da expressão:

\[ \left( \frac{3^{12} – 3^{11} – 3^{10}}{3^{11} + 3^{10} + 3^{10}} \right) \]

🔍 Ver solução passo a passo

Passo 1: Fatorar o numerador:

\( 3^{12} – 3^{11} – 3^{10} \)
Colocando \( 3^{10} \) em evidência: \[ = 3^{10}(3^2 – 3 – 1) = 3^{10}(9 – 3 – 1) = 3^{10} \cdot 5 \]

Passo 2: Fatorar o denominador:

\( 3^{11} + 3^{10} + 3^{10} = 3^{11} + 2 \cdot 3^{10} \)
Colocando \( 3^{10} \) em evidência: \[ = 3^{10}(3 + 2) = 3^{10} \cdot 5 \]

Passo 3: Efetuar a divisão:

\[ \frac{3^{10} \cdot 5}{3^{10} \cdot 5} = 1 \]

Passo 4: Multiplicação final:

\( 1 \cdot 1 = 1 \)

Resposta final: \( \boxed{1} \)

🧠 Mapas Mentais de Matemática

📘 Acessar a Lista Completa: 18 Questões Resolvidas sobre Potenciação

"Artigo escrito por"

Nos ajude compartilhando esse post 😉

Facebook
WhatsApp
Twitter
Pinterest

Veja também...

Rolar para cima