PROFMAT 2018 – Questão 26

PROFMAT 2018 – Questão 26
PROFMAT 2018 – Questão 26 | Geometria Espacial – Perímetro em Cubo

O cubo da figura abaixo tem aresta de medida 3. Se \(AI = CJ = FK = 1\), qual é o perímetro do triângulo \(IJK\)?

Cubo com triângulo IJK

(A) \(2\sqrt{10} + 3\sqrt{2}\)

(B) \(3\sqrt{10}\)

(C) \(9\sqrt{2}\)

(D) \(2\sqrt{13} + 3\sqrt{2}\)

(E) \(2\sqrt{10} – 3\sqrt{2}\)

Solução passo a passo:

Observando o cubo de aresta \(3\), os triângulos \(LIK\) e \(LIJ\) formados são retângulos.

Cubo com triângulo IJK

Calculando as distâncias:

\[ IK^2 = 3^2 + 1^2 = 10 \quad \Rightarrow \quad IK = \sqrt{10} \]

\[ IJ^2 = 3^2 + 3^2 = 18 \quad \Rightarrow \quad IJ = 3\sqrt{2} \]

O triângulo \(IJK\) é isósceles em \(I\), com lados:

  • \(IK = \sqrt{10}\)
  • \(JK = \sqrt{10}\)
  • \(IJ = 3\sqrt{2}\)

Logo, o perímetro do triângulo é:

\[ P = 2\sqrt{10} + 3\sqrt{2} \]

Resposta: (A) \(2\sqrt{10} + 3\sqrt{2}\)

📘 Aproveite para reforçar seus estudos:
🔹 Mapas Mentais de Matemática
🔹 Baixe os 10 eBooks de Matemática
Coleção A Matemática do Ensino Médio

📚 Coleção A Matemática do Ensino Médio

Público-alvo: Professores de Matemática, Estudantes do PROFMAT, Amantes da Matemática, Alunos de Olimpíadas e Cursos de Licenciatura e Bacharelado.

Volume 1

Volume 1

Teoria de Conjuntos, Funções e Conceitos Fundamentais da Matemática.

🔗 Comprar
Volume 2

Volume 2

Progressões Aritméticas e Geométricas, Probabilidade e Geometria Espacial.

🔗 Comprar
Volume 3

Volume 3

Geometria Analítica, Matrizes, Determinantes, Polinômios e Números Complexos.

🔗 Comprar
Volume 4

Volume 4

Exercícios e Revisão Completa de Todos os Conteúdos da Coleção.

🔗 Comprar

"Artigo escrito por"

Nos ajude compartilhando esse post 😉

Facebook
WhatsApp
Twitter
Pinterest

Veja também...

Questões

Conteúdo

Banca

Rolar para cima