Questão 11 – PROFMAT 2025

Questão 11 – PROFMAT 2025
Questão 11 – PROFMAT 2025
Quantos são os anagramas da palavra DIVISIBILIDADE?

(A) \( \frac{14!}{3!5!} \)

(B) \( \frac{14!}{3!4!} \)

(C) \( \frac{14!}{2!5!} \)

(D) \( \frac{14!}{7!} \)

(E) \( \frac{14!}{2!4!} \)

Solução Passo a Passo

1º Passo: Contar as letras da palavra DIVISIBILIDADE:

  • Total de letras: 14
  • Repetições: D (3 vezes) e I (5 vezes)

2º Passo: Fórmula do número de anagramas com letras repetidas:

\[ \text{Anagramas} = \frac{14!}{3! \cdot 5!} \]

3º Passo: Esta corresponde à alternativa A.

📚 Coleção: A Matemática do Ensino Médio

Volume 1

A Matemática do Ensino Médio – Volume 1

👉 Comprar Agora
Volume 2

A Matemática do Ensino Médio – Volume 2

👉 Comprar Agora
Volume 3

A Matemática do Ensino Médio – Volume 3

👉 Comprar Agora
Volume 4

A Matemática do Ensino Médio – Volume 4

👉 Comprar Agora

"Artigo escrito por"

Nos ajude compartilhando esse post 😉

Facebook
WhatsApp
Twitter
Pinterest

Veja também...

Rolar para cima